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Abstract

The effect of rotation and anisotropy on the onset of convection in a horizontal porous layer is investigated using a linear theory and a weak
nonlinear theory. The linear theory is based on the usual normal mode technique and the nonlinear theory on the truncated Fourier series analysis.
Darcy model extended to include time derivative and Coriolis terms with anisotropic permeability is used to describe the flow through porous
media. A modified energy equation including the thermal anisotropy is used. The effect of rotation, mechanical and thermal anisotropy parameters
and the Prandtl number on the stationary and overstable convection is discussed. It is found that the effect of mechanical anisotropy is to allow the
onset of oscillatory convection instead of stationary. It is also found that the existence of overstable motions in case of rotating porous medium is
not restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The steady finite amplitude analysis is performed
using truncated Fourier series to find the Nusselt number. The effect of various parameters on heat transfer is investigated.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of the effect of external rotation on thermal con-
vection has attracted significant experimental and theoretical
interest. Because of its general occurrence in geophysical and
oceanic flows, it is important to understand how the Corio-
lis force influences the structure and transport properties of
thermal convection. Rotating thermal convection also provides
a system to study hydrodynamic instabilities, pattern forma-
tion and spatio-temporal chaos in nonlinear dynamical systems.
The study of thermal convection in rotating porous media is
motivated both theoretically and by its practical applications
in engineering. Some of the important areas of applications
in engineering include the food processing, chemical process,
solidification and centrifugal casting of metals and rotating ma-
chinery.

The stability of problems of thermal convection in rotat-
ing porous media has been investigated by many authors.
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Friedrich [1] has investigated the stability of a rotating porous
layer heated from below using a linear stability analysis and
also a numerical nonlinear analysis. Patil and Vaidyanathan [2]
have studied this problem including the influence of variable
viscosity. Both these studies considered a non-Darcy model,
which is probably subject to the limitations as shown by
Nield [3]. Jou and Liaw [4] investigated the problem of ther-
mal convection in a rotating porous layer subject to transient
heating from below using Darcy model. They have obtained
only the stability conditions for the marginal state. Palm and
Tyvand [5] have established an interesting analogy between
a rotating porous layer and an anisotropic porous layer. Qin
and Kaloni [6] have studied the nonlinear stability of the ro-
tating Benard problem in a porous medium by employing the
generalized Brinkman model as a suitable prototype for high
porosity porous media using energy theory. They derived suf-
ficient conditions for nonlinear stability and also determined
critical energy bound by solving variational problem.

Vadasz [7] has performed a linear as well as a weak non-
linear stability analysis of a rotating porous layer heated from
below using Darcy model with time derivative term. It was re-
ported that, in contrast to the problem in pure fluids, overstable
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Nomenclature

a wavenumber,
√

l2 + m2

d height of the porous layer . . . . . . . . . . . . . . . . . . . m
D thermal diffusivity tensor,

Dx(ii + jj) + Dz(kk) . . . . . . . . . . . . . . . . . . . m2 s−1

Da Darcy number, Kz/d
2

g gravitational acceleration, (0,0,−g) . . . . . . m s−2

H rate of heat transport per unit area . . . . . . m s−1 K
K permeability tensor, K−1

x (ii + jj)+ K−1
z (kk) m−2

l,m horizontal wavenumbers
Nu Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−1s−2

Pr effective Prandtl number, ν/Dz

q velocity vector, (u,v,w) . . . . . . . . . . . . . . . . . m s−1

R Rayleigh number, βg�T dKz/νDz

Ra scaled Rayleigh number, R/π2

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�T temperature difference between the walls . . . . . K
Ta Taylor number, (2ΩKz/εν)2

x, y, z space coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α scaled wavenumber, a2/π2

β thermal expansion coefficient . . . . . . . . . . . . . . K−1

γ scaled Darcy–Prandtl number, χ/π2

χ Darcy–Prandtl number, εPr/Da
ε porosity

η thermal anisotropy parameter, Dx/Dz

μ dynamic viscosity . . . . . . . . . . . . . . . . . . kg m−1 s−1

ν kinematic viscosity, μ/ρ0 . . . . . . . . . . . . . . . m2 s−1

θ dimensionless temperature
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ growth rate
τ rescaled time, χt

ω vorticity vector, ∇ × q . . . . . . . . . . . . . . . . . . . . . s−1

� angular velocity, (0,0,Ω) . . . . . . . . . . . . . . . . . s−1

ξ mechanical anisotropy parameter, Kx/Kz

ψ stream function . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

∇2
h

∂2

∂x2 + ∂2

∂y2

∇2 ∇2
h + ∂2

∂z2

Subscripts

b basic state
c critical
f fluid
h horizontal
0 reference
s solid

Superscripts

∗ dimensionless quantity
′ perturbed quantity
osc oscillatory state
st stationary
convection in porous media at marginal stability is not limited
to a particular range of the values of Prandtl number. It was
also established by Vadasz [7] that in the porous media prob-
lem the wavelength of the roll measured in the plane containing
the streamlines is not independent of rotation, a result that is
quite distinct from the corresponding pure fluids problem. An
excellent review of research on thermal convection in a rotating
porous media has been given by Vadasz [8].

A nonlinear stability analysis is performed for thermal con-
vection in a rotating fluid saturated porous layer using en-
ergy stability theory by Straughan [9]. It is reported that the
global nonlinear stability Rayleigh number is exactly same as
that for linear instability and for the rotating porous convec-
tion problem governed by Darcy equation, subcritical insta-
bilities are not possible. The effect of Coriolis force on cen-
trifugally driven convection in a rotating porous layer is an-
alyzed by Govender [10]. The marginal stability criterion is
established as a characteristic centrifugal Rayleigh number in
terms of the wavenumber and the Taylor number. More re-
cently Straughan [11] has analyzed nonlinear stability in porous
medium with a thermal nonequilibrium model, when the layer
rotates with a constant angular velocity about an axis in the
same direction as gravity and demonstrated the equivalence of
linear instability and nonlinear stability boundaries.
Anisotropy is generally a consequence of preferential ori-
entation or asymmetric geometry of porous matrix or fibers
and is in fact encountered in numerous systems in industry
and nature. Anisotropy is particularly important in a geologi-
cal context, since sedimentary rocks generally have a layered
structure; the permeability in the vertical direction is often
much less than in the horizontal direction. Anisotropy can also
be a characteristic of artificial porous materials like pelleting
used in chemical engineering process and fiber material used
in insulating purpose. Despite the practical importance, in con-
texts varying from fibrous insulating material to sedimentary
rocks, only few studies have been reported on convection in
an anisotropic porous medium uniformly heated from below.
The review of research on convective flow through anisotropic
porous media has been well documented by McKibbin [12,13]
and Storesletten [14,15]. Castinel and Combarnous [16] have
conducted an experimental and theoretical investigation on the
Rayleigh–Benard convection in an anisotropic porous medium.
Epherre [17] extended the stability analysis to a porous medium
with anisotropy in thermal diffusivity also. A theoretical analy-
sis of nonlinear thermal convection in an anisotropic porous
medium was performed by Kvernvold and Tyvand [18]. Nilsen
and Storesletten [19] have studied the problem of natural con-
vection in both isotropic and anisotropic porous channels. Ty-
vand and Storesletten [20] investigated the problem concerning
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the onset of convection in an anisotropic porous layer in which
the principal axes were obliquely oriented to the gravity vector.

The available works on thermal convection in a rotating
porous media are all concerned with isotropic media except
a recent work by Govender [21]. The work of Govender [21]
is concerned with natural convection in an anisotropic porous
layer subject to centrifugal body force employing the Darcy
model using linear stability theory. It is found that the convec-
tion is stabilized when the anisotropy ratio, which is a function
of the thermal and mechanical anisotropy parameters, is in-
creased in magnitude. One of the anonymous reviewers has
brought to our notice an unpublished work on the effect of
mechanical and thermal anisotropy on the linear stability of sta-
tionary convection in a rotating porous media by Govender and
Vadasz [22].

The objective of the present study is to investigate the com-
bined effect of rotation and anisotropy on the thermal convec-
tion in a horizontal porous layer using a linear analysis and
nonlinear analysis.

2. Mathematical formulation

Consider a fluid saturated anisotropic porous layer of infinite
horizontal extent confined between parallel, stress-free planes
at z = 0 and z = d subject to rotation and maintained at constant
temperatures T0 + �T and T0 respectively. A Cartesian frame
of reference is chosen with x- and y-axes at the lower bound-
ary plane and z-axis directed vertically upwards in the gravity
field. The axis of rotation is assumed to coincide with the z-axis.
The porous medium is assumed to possess horizontal isotropy
in both mechanical and thermal properties. The extended Darcy
law, which includes the time derivative and the Coriolis term,
is employed as a momentum equation and Boussinesq approxi-
mation is applied to account for the effects of density variations.
With these assumptions the basic governing equations may be
written as

∇ · q = 0 (2.1)
1

ε

∂q
∂t

+ 2

ε
� × q + μ

ρ0
K · q = − 1

ρ0
∇p + ρ

ρ0
g (2.2)

∂T

∂t
+ (q · ∇)T = ∇ · (D · ∇T ) (2.3)

ρ = ρ0
[
1 − β(T − T0)

]
(2.4)

The components of the thermal diffusivity tensor D are writ-
ten in terms of porosity and appropriate thermal diffusivities of
the fluid and solid states as Di = ε(Di)f + (1 − ε)(Di)s with
i = x, z.

The basic state of the fluid is assumed to be quiescent.
The quantities of the basic state are given by, qb = (0,0,0),
Tb = T (z), pb = p(z), ρb = ρ(z), which satisfy the equations

dpb

dz
= ρbg,

d2Tb

dz2
= 0, ρb = ρ0

[
1 − β(Tb − T0)

]
(2.5)

On the basic state we superpose small perturbations around the
basic solutions in the form
q = qb + q′, T = Tb(z) + T ′

p = pb(z) + p′, ρ = ρb(z) + ρ′ (2.6)

where the primes indicate perturbations. Substituting Eq. (2.6)
into Eqs. (2.1)–(2.4) using the basic state equations (2.5) and
the transformations

(x, y, z) = d(x∗, y∗, z∗), t = d2

Dz

t∗, p′ = μDz

Kz

p∗

(u′, v′,w′) = Dz

d
(u, v,w), T ′ = (�T )T ∗

to render the equations dimensionless we obtain (after dropping
the asterisks for simplicity),

∇ · q = 0 (2.7)
∂q
∂τ

+ Ta1/2k × q + qa = −∇p + RT k (2.8)

χ
∂T

∂τ
+ (q · ∇)T − w =

[
η∇2

h + ∂2

∂z2

]
T (2.9)

where qa = (u
ξ
, v

ξ
,w), is the anisotropy modified velocity vec-

tor and τ = χt is the rescaled time. The boundary conditions
in only the z-direction are required for solving Eqs. (2.7)–(2.9)
and are given by

w = T = 0 at z = 0 and z = 1. (2.10)

Vadasz [7] in his comprehensive work reported that the typ-
ical values of Darcy–Prandtl number χ in traditional porous
media applications are quite big, a fact which provides the jus-
tification for neglecting the time derivative term in Eq. (2.8).
This is then the classical theory of Darcy. Nield and Bejan [23]
argue for this scenario, which is certainly true in many geophys-
ical and engineering applications. However, Vadasz [7] argues
that in circumstances linked to modern porous media applica-
tions the value of χ can become of unit order of magnitude or
even smaller, in which case the time derivative should be re-
tained. Straughan [9] and Govender [10] have also supported
this argument. Accordingly, following Vadasz [7] line of argu-
ment, in the present paper, we keep the time derivative terms
in the Darcy equation in order to allow for the possibility of
overstable motions and will find how Darcy–Prandtl number χ

influences the overstable motions. It is worth mentioning that
the Rayleigh number and Taylor number in the present paper
are defined in terms of vertical permeability Kz and they differ
by a factor of Da−1 and Da−2, respectively, from the corre-
sponding definitions used by Rudraiah et al. [24] to study the
effect of rotation on double diffusive convection in a sparsely
packed porous medium.

We now eliminate the pressure from Eq. (2.8) by applying
the curl operator on it which yields an equation for vorticity,
defined as ω = ∇ × q, in the form

∂ω

∂τ
+ 1

ξ
ωa − Ta1/2 ∂q

∂z
= R

[
∂T

∂y
i − ∂T

∂x
j
]

(2.11)

where ωa = ∇ × qa , denotes the anisotropy modified vorticity
vector.
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It is important to note that the vertical component of
Eq. (2.11) is independent of temperature. Once again by ap-
plying the curl on Eq. (2.11) one can get the equation

∂

∂τ

(∇2q
) + Ta1/2 ∂ω

∂z
+ Q

+ R

[
∂2T

∂x∂z
i + ∂2T

∂y∂z
j − ∇2

hT k
]

= 0 (2.12)

with

Q = (Q1,Q2,Q3)

where

Q1 =
[

∂2

∂x2
+ 1

ξ

(
∂2

∂y2
+ ∂2

∂z2

)]
u +

(
1 − 1

ξ

)
∂2v

∂x∂y

Q2 =
[

∂2

∂y2
+ 1

ξ

(
∂2

∂z2
+ ∂2

∂x2

)]
v +

(
1 − 1

ξ

)
∂2u

∂x∂y

and

Q3 =
(

∂2

∂x2
+ ∂2

∂y2
+ 1

ξ

∂2

∂z2

)
w

3. Linear stability analysis

In this section, we perform the linear stability analysis,
which is very useful in the local nonlinear stability analysis dis-
cussed in the next section. For this, we remove the coupling
between the linear form of Eq. (2.9) and Eqs. (2.11)–(2.12) by
eliminating q and ω to provide a single equation for the tem-
perature perturbation in the form{[

∂

∂τ

(
∂

∂τ
+ 1

ξ

)
∇2 +

(
∂

∂τ
+ 1

ξ

)(
∇2

h + 1

ξ

∂2

∂z2

)
+ Ta

∂2

∂z2

]

×
(

χ
∂

∂τ
− η∇2

h − ∂2

∂z2

)
− R

(
∂

∂τ
+ 1

ξ

)
∇2

h

}
T

= 0 (3.1)

Then the boundary conditions in terms of T are given by

T = ∂2T

∂z2
= 0 at z = 0 and z = 1 (3.2)

We assume the normal mode solution in the form

T = θ(z) exp
[
i(lx + my) + στ

]
(3.3)

Using (3.3) in Eq. (3.1) one can obtain an ordinary differential
equation for θ(z) as follows{[

σ
(
σ + ξ−1)(D2 − a2) + (

σ + ξ−1)(ξ−1D2 − a2)
+ TaD2](D2 − ηa2 − χσ

) − R
(
σ + ξ−1)a2}θ = 0

(3.4)

where D ≡ d
dz

. The boundary conditions (3.2) reduce to

θ = D2θ = 0 at z = 0 and z = 1 (3.5)

The solution of Eq. (3.4) satisfying Eq. (3.5) should be a peri-
odic wave of the form θ(z) = An sin(nπz) which minimizes
the Rayleigh number when n = 1, indicating that θ(z) =
A1 sin(πz) is the eigenfunction for marginal stability. Substi-
tuting this into Eq. (3.4) one can obtain
Ra = [1 + ηα + γ σ ][(σ + ξ−1){σ(1 + α) + (ξ−1 + α)} + Ta]
α(σ + ξ−1)

(3.6)

an expression for the scaled Rayleigh number Ra = R/π2,
where α = a2/π2 and γ = χ/π2 being the rescaled wavenum-
ber and Darcy–Prandtl number respectively. One can observe
that when ξ = η = 1, Eq. (3.6) yields the result of Vadasz [7]
for the case of isotropic porous layer.

If σ is real, then marginal stability occurs when σ = 0. Then
Eq. (3.6) gives the Rayleigh number Rast for the onset of sta-
tionary convection, in the form

Rast = 1

α

(
ξ−1 + α

)
(ηα + 1) + ξ

α
(ηα + 1)Ta (3.7)

The first term in the expression for stationary Rayleigh number
represents the value for the onset of convection in the absence
of rotation while the second term represents the contribution of
rotation. The critical value of stationary Rayleigh number and
the corresponding wavenumber is given by

Rast
c = [

1 +
√

ξη
(
ξ−2 + Ta

)]2 and

αst
c = [

ξη−1(ξ−2 + Ta
)]1/2 (3.8)

The problem of stationary convection has been studied by
Govender and Vadasz [22] and for details one can refer to the
work of Govender and Vadasz [22]. We discuss below in detail
the oscillatory convection.

It is well known that the oscillatory motions are possible
only if some additional constraints like rotation, salinity gra-
dient and magnetic field are present. For the oscillatory mode
σ must be represented as σ = σr + iσi . At the marginal state
σr = 0 and σi �= 0. Substituting σ = iσi into Eq. (3.6) and im-
posing the condition σ 2

i > 0, which is the requirement for σi to
be real in order to get overstability possible at all, yields two al-
gebraic equations by requiring the imaginary and the real part
of Eq. (3.6) to vanish separately. This provides the solution for
the characteristic values of the Rayleigh number and the fre-
quency σi of the oscillations at the margin of stability in the
form

Raosc = 2 + α(1 + ξ)

αξ2

× [
γ ξ(ηα + 1)(2 + α + αξ) + ξ2(1 + α)(ηα + 1)2

+ γ 2(1 + αξ + ξ2Ta)
][

ξ(1 + α)(ηα + 1)

+ γ (1 + αξ)
]−1 (3.9)

σ 2
i = [ξ(ηα + 1) − γ ]Ta

ξ(1 + α)(ηα + 1) + γ (1 + αξ)
− 1

ξ2
(3.10)

The critical Rayleigh number, wavenumber and correspond-
ing frequency are obtained by minimizing Raosc in Eq. (3.9)
with respect to α which results in a sixth degree equation for α

in the form

α6 + �1α
5 + �2α

4 + �3α
3 + �4α

2 + �5α + �6 = 0 (3.11)

(the expressions for the coefficients are not given for brevity).
The solution to Eq. (3.11) is obtained numerically which gives
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one real positive root αosc
c that minimizes the Rayleigh num-

ber Raosc corresponding to each set of values of γ , Ta, ξ and η

within the overstability limit. By substituting the value of αosc
c

into Eq. (3.9) one obtains the critical Rayleigh number for os-
cillatory mode. Similarly, substituting the critical wavenumber
αosc

c into Eq. (3.10) we obtain the critical frequency σ 2
i,c.

It has been investigated by Vadasz [7] that there is no straight
limitation on the Prandtl number for the overstability to set in
at the threshold in the case of thermal convection in a rotat-
ing porous layer. It is worth mentioning that in case of pure
fluid problem with rotation, the Prandtl number should be less
than unity for the overstability to set in at the onset of convec-
tion. This limits the inventory of fluids for which convection
can set in as overstability in the pure fluid case. It is interest-
ing to note from Eq. (3.10) that there is no straight limitation on
the Darcy–Prandtl number for overstability to set in at the onset
of convection in an anisotropic porous medium also. However,
Eq. (3.10) gives a condition relating the Darcy–Prandtl number
and the Taylor number, which permits overstability in the form

Ta >
(1 + α)(ηα + 1) + γ ξ−1(1 + αξ)

ξ [ξ(ηα + 1) − γ ] and

γ < ξ(ηα + 1) (3.12)

It is worth noticing the particular case when γ → 0, which de-
mands some special attention because it provides a lower bound
for the overstable characteristic curves. Accordingly substitut-
ing γ = 0 in Eqs. (3.9) and (3.10) we obtain

Raosc = [2 + α(1 + ξ)](ηα + 1)

αξ
and

σ 2
i = Ta

(1 + α)
− 1

ξ2
(3.13)

It is easy to verify that the overstable Rayleigh number corre-
sponding to γ → 0, given by Eq. (3.13) takes minimum value
when α = αc where αc is given by

αc = 1

αη

[−ξη +
√

ξ2η2 + 8η
]

(3.14)

It is evident from Eq. (3.13) that the characteristic curves for
γ = 0 are all independent of the Taylor number. Therefore they
provide the lower limit for all characteristic curves. The char-
acteristic curves corresponding to different values of γ lie in
between the curve for γ = 0 and the stationary convection curve
associated with particular values of the other parameters. When
ξ = η = 1, Eq. (3.13) reduces to

Raosc = 2(1 + α)2

α
and σ 2

i = Ta

(1 + α)
− 1 (3.15)

Substituting ξ = η = 1 in Eqs. (3.9) and (3.10) one can recover
the results of isotropic case (Vadasz [7])

Raosc = 2

α

[
(1 + α)(1 + α + γ ) + γ 2Ta

1 + α + γ

]
(3.16)

σ 2
i = (1 + α − γ )Ta

(1 + α)(1 + α + γ )
− 1 (3.17)

It has been established by Straughan [9] that the global non-
linear stability Rayleigh number is exactly the same as that for
linear instability given by Vadasz [7] and for the rotating porous
convection problem governed by the Darcy equation, subcriti-
cal instabilities are not possible. Therefore it is believed that
in case of an anisotropic rotating porous convection also the
subcritical instabilities are not possible and the linear stability
theory completely captures the physics, describing the onset of
convection. In the next section we perform a nonlinear stability
analysis and express heat transfer by conduction and convection
and observe the effect of rotation through Ta on it.

4. Finite amplitude steady convection with limited
representation

In this section we consider the nonlinear analysis using
a truncated representation of Fourier series with only two terms.
Although the linear stability analysis is sufficient for obtaining
the stability condition of the motionless solution and the corre-
sponding eigenfunctions describing qualitatively the convective
flow, it cannot provide information about the values of the con-
vection amplitudes, nor regarding the rate of heat transfer. To
obtain this additional information, we perform the nonlinear
analysis, which is useful to understand the physical mechanism
with minimum amount of mathematical analysis and is a step
forward towards understanding full nonlinear problem.

For simplicity of analysis, we confine ourselves to the two-
dimensional rolls, so that all the physical quantities are indepen-
dent of y. We introduce stream function such that u = ∂ψ/∂z,
w = −∂ψ/∂x into Eqs. (2.8)–(2.9) and setting ∂

∂t
= 0 (for the

steady state) to obtain
[(

∂2

∂x2
+ 1

ξ

∂2

∂z2

)
+ ξ Ta

∂2

∂z2

]
ψ + R

∂T

∂x
= 0 (4.1)

(
η

∂2

∂x2
+ ∂

∂z2

)
T + ∂ψ

∂x

∂T

∂z
− ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x
= 0 (4.2)

A minimal double Fourier series which describes the finite
amplitude steady convection is given by

ψ = A sin(ax) sin(πz) (4.3)

T = B cos(ax) sin(πz) + C sin(2πz) (4.4)

where the amplitudes A,B and C are constants and are to
be determined from the dynamics of the system. Substituting
Eqs. (4.3)–(4.4) into Eqs. (4.1)–(4.2) and equating the coeffi-
cients of like terms we obtain the following nonlinear system
of equations
[(

a2 + π2

ξ

)
+ π2ξ Ta

]
A + aRB = 0 (4.5)

aA + (
ηa2 + π2)B + πaAC = 0 (4.6)

8π2C − πaAB = 0 (4.7)

The steady state solutions are useful because they predict
that a finite amplitude solution to the system is possible for
subcritical values of the Rayleigh number and that the mini-
mum values of R for which a steady state solution is possible
lies below the critical values for instability to either a marginal
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state or an overstable infinitesimal perturbation. Elimination of
all amplitudes, except for A, yields

A

{[(
a2 + π2

ξ

)
+ π2ξ Ta

]

− a2R

[(
ηa2 + π2) + a2

(
A2

8

)]−1}
= 0 (4.8)

The solution A = 0 corresponds to pure conduction, which we
know to be a possible solution though it is unstable when R is
sufficiently large. The remaining solutions are given by

A2

8
= Ra

α + 1/ξ + ξ Ta
− ηα + 1

α
(4.9)

where Ra and α stand for the rescaled Rayleigh number and the
wavenumber respectively. Once we know the amplitude we can
find the heat transfer.

In the study of convection in porous medium, the quantifi-
cation of heat transports is important. This is because onset of
convection, as Rayleigh number is increased, is more readily
detected by its effect on the heat transport. If H is the rate of
heat transport per unit area, then

H = −Dz

〈
∂Ttotal

∂z

〉
z=0

(4.10)

where the angular bracket denotes horizontal average and

Ttotal = T0 − �T
z

d
+ T (x, z, t) (4.11)

Substituting Eq. (4.4) into Eq. (4.11) and the resulting equation
into Eq. (4.10), performing the average, we get

H = Dz�T

d
(1 − 2πC) (4.12)

The Nusselt number Nu is defined by

Nu = H

Dz�T/d
= 1 − 2πC (4.13)

Writing C in terms of A, substituting into Eq. (4.13) and using
Eq. (3.7), we obtain a simple expression for the Nusselt number
in the form

Nu = 1 + 2

(
1 − Rast

Ra

)
(4.14)

The second term on the right-hand side of Eq. (4.14) represents
the convective contribution to heat transport.

5. Results and discussion

The neutral stability curves in the Ra − α plane for various
parameter values are shown in Figs. 1–4. From these figures it
is clear that the neutral curves are connected in a topological
sense. This connectedness allows the linear stability criteria to
be expressed in terms of the critical Rayleigh number, Rac , be-
low which the system is stable and unstable above. The points
where the overstable solutions branch off from the stationary
convection can be easily identified from these figures. Also we
observe that for smaller values of the wavenumber each curve
is a margin of the oscillatory instability and at some fixed α
Fig. 1. Neutral stability curves for different values of mechanical anisotropy
parameter ξ .

Fig. 2. Neutral stability curves for different values of thermal anisotropy para-
meter η.

depending on the other parameters the overstability disappears
and the curve forms the margin of stationary convection.

The effect of mechanical anisotropy parameter ξ for the
fixed values of thermal anisotropy parameter η = 0.5, Tay-
lor number Ta = 20 and the scaled Darcy–Prandtl number
γ = 5/π2, on the marginal stability curves is depicted in Fig. 1.
It can be observed that an increase in ξ decreases the minimum
of the Rayleigh number for oscillatory state. That is the effect
of increasing the ratio of permeability ξ is to advance the on-
set of oscillatory convection. Further an important question is
whether, under the critical conditions for the onset of instabil-
ity, the instability manifests itself as stationary convection or as
oscillatory convection. It is interesting to note that there is a crit-
ical value ξ = ξ∗ (e.g., for a fixed values of Ta = 20, η = 0.5,
γ = 5/π2, ξ∗ = 0.634309 see Fig. 1) such that for ξ < ξ∗ the
instability manifested as stationary convection and for ξ � ξ∗,
the onset of instability manifests as oscillatory convection. Thus
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Fig. 3. Neutral stability curves for different values of Taylor number Ta.

Fig. 4. Neutral stability curves for different values of scaled Darcy–Prandtl
number γ .

the effect of mechanical anisotropy is to allow the onset of os-
cillatory convection instead of stationary convection.

Fig. 2 indicates the effect of thermal anisotropy parameter η

on the neutral curves for the fixed values of the mechanical
anisotropy parameter ξ = 0.6, Taylor number Ta = 20 and the
scaled Darcy–Prandtl number γ = 5/π2. It is observed that crit-
ical value of Rayleigh number increases with η, indicating that
the effect of thermal anisotropy parameter η is to inhibit the
onset of convection. We also find from Fig. 2 that the onset
of instability manifests as stationary convection for very small
values of the thermal anisotropy parameter η. However as η in-
creases, instability sets in as oscillatory mode.

Fig. 3 depicts the effect of rotation on the neutral curves for
fixed values ξ = 0.6, η = 0.5 and γ = 5/π2. We find that the
effect of increasing Ta is to increase the critical value of the
Rayleigh number and the corresponding wavenumber implying
that the rotation has a stabilizing effect on the thermal convec-
tion in porous medium. This can be explained as follows: rota-
tion acts so as to suppress vertical motion, and hence thermal
Fig. 5. Variation of scaled critical Rayleigh number with mechanical anisotropy
parameter ξ for different values of Taylor number Ta.

convection, by restricting the motion to the horizontal plane.
Further this figure also indicates that for small Ta the instability
manifests as stationary convection while as Ta is increased, the
instability sets in as oscillatory convection. The neutral stability
curves corresponding to Ta = 20, ξ = 0.6, η = 0.5 and for dif-
ferent values of scaled Darcy–Prandtl number γ are presented
in Fig. 4. The points where the overstable solutions branch off
from the stationary convection curves can be identified clearly.
From this figure it is evident that the characteristic curve for
γ = 0 provide the lower limit for all other curves. The neutral
curves corresponding to different values of γ lies between the
curve for γ = 0 and the stationary convection curve when the
other parameters are fixed.

The behavior of the stationary and oscillatory critical Ray-
leigh number as a function of the mechanical anisotropy para-
meter for different values of Taylor number is shown in Fig. 5.
In the absence of rotation i.e., when Ta = 0, an increased me-
chanical anisotropy parameter reduces the stationary critical
Rayleigh number. This is the classical result of Epherre [17].
However, in the presence of rotation, it is interesting to note
that, the stationary critical Rayleigh number decreases to its
minimum value with increasing ξ up to a certain value ξ = ξc

and as ξ is increased further beyond ξc , the critical Rayleigh
number for stationary mode increases. Further the effect of
anisotropy parameter on the stationary critical Rayleigh num-
ber is significant for large Taylor number. The critical Rayleigh
number for oscillatory mode however decreases with increas-
ing ξ . This figure also indicates the stabilizing effect of the
rotation.

The variation of the critical Rayleigh Rac with Taylor
number Ta for different values of ξ , η and γ is shown in
Figs. 6(a)–(c). We observe from these figures that the critical
Rayleigh number increases with increase in Ta indicating that
the effect of rotation is to inhibit the onset of thermal convec-
tion and it is in agreement with the corresponding problem of
isotropic porous layer (Vadasz [7]) and pure fluid layer (Chan-
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Fig. 6. Variation of scaled critical Rayleigh number with Taylor number for
different values of (a) ξ , (b) η, and (c) γ .

drashekhar [25]). However, this effect is not significant for the
smaller values of the Ta. From each of these figures it is also
observed that the convection first sets in as a stationary mode
and after some value of Ta > Ta∗ (critical value) which depends
on the other parameters such as ξ , η, and γ the instability man-
ifests as oscillatory convection. Therefore, the oscillatory mode
is the most dangerous mode for the system with moderate and
higher values of Ta. Further it is interesting to note that for
larger values of the mechanical anisotropy parameter ξ , the os-
cillatory convection exists even for small values of the Taylor
number (Fig. 6(a)).

In Fig. 6(a) the variation of Rac with Ta for different values
of mechanical anisotropy parameter ξ is shown for the fixed
Fig. 7. Variation of scaled critical oscillatory Rayleigh number scaled
Darcy–Prandtl number for different values of (a) Ta, (b) ξ and (c) η.

values η = 0.5 and γ = 5/π2. It is important to note that the
critical Rayleigh number for the direct mode decreases with
increase of ξ for smaller values of Ta whereas for the higher
values of the Ta this trend reverses. The critical Rayleigh num-
ber for the overstable mode always decreases with increase in
the value of ξ . Further it is important to note that the value of
the Taylor number Ta, at which the transition from stationary to
oscillatory mode takes place decreases with the increase of ξ .
Therefore increasing ξ increases the possibility of overstable
motions even for small values of the Taylor number.

The effect of thermal anisotropy parameter η and scaled
Darcy–Prandtl number γ on the onset criteria is shown in
Figs. 6(b) and 6(c) respectively. We observe from these figures
that effect of both η and γ is to delay the onset of convection
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Fig. 8. Variation of critical frequency of oscillations with scaled Darcy–Prandtl
number for different values of (a) Ta, (b) ξ and (c) η.

both in stationary and oscillatory modes. Further the value of
Ta at which the transition from stationary to oscillatory mode
occurs is found to decrease with η and increase with γ . Further
Fig. 6(c) indicates that the oscillatory Rayleigh number is inde-
pendent of the Taylor number when γ → 0. This is consistent
with the limiting cases discussed in Section 3.

The variation of oscillatory critical Rayleigh number Raosc
c

as a function of γ for different values of Taylor number Ta, the
anisotropy parameters ξ and η is shown in Figs. 7(a)–(c). The
curves in each of these cases end at the point where no more
values consistent with the condition σ 2

i > 0 exist. These figures
also indicate the range of values of Taylor number Ta, mechan-
ical and thermal anisotropy parameter ξ and η for which the
oscillatory motions exists. It is important to note that the range
Fig. 9. Variation of Nusselt number Nu with scaled Rayleigh number Ra for
different values of (a) Ta, (b) ξ and (c) η.

of γ over which the overstable motions are possible increases
with Taylor number Ta, mechanical and thermal anisotropy pa-
rameters ξ and η.

The variation of the critical value of the frequency σ 2
ic with

γ for different values of Taylor number Ta, the anisotropy para-
meters ξ and η are shown respectively in Figs. 8(a)–(c). We
observe that there is a marked increase in the value of the
frequency with increasing Taylor number Ta and anisotropy
parameters ξ and η when the values of γ are small and the
frequencies decay as γ increases.

The quantity of heat transferred across the layer is computed
by the Nusselt number as a function of Ra, Ta, ξ and η. The
domain of nonlinear convection warrants the quantification of
heat transfer. This is depicted in the Rayleigh–Nusselt number
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plane through Figs. 9(a)–(c). These figures reveal the quantita-
tive effect of rotation and anisotropy of the porous layer on heat
transport. We observe that as Ra increases from one to three
times of its critical value, the heat transport increases sharply
and as Ra is increased further, it remains almost constant. It is
also found that the heat transport increases with increase in ξ

where as it decreases with the increase in Ta and η. This is be-
cause the effect of rotation and thermal anisotropy is to inhibit
the onset of thermal convection.

6. Conclusions

The onset of thermal convection in a fluid saturated rotating
anisotropic porous layer is investigated using both linear and
nonlinear stability analyses. The linear theory provides the cri-
teria for the onset of stationary and oscillatory convection and
the nonlinear theory, which is based on the truncated Fourier
series method, provides a method to measure the convection
amplitudes and the rate of heat transfer. The following conclu-
sions are drawn:

(1) The oscillatory mode is most favorable for a system with
moderate and high values of the Taylor number. However
for large value of the mechanical anisotropy, the oscillatory
motions exist even for small values of the Taylor number.

(2) The value of Taylor number at which the transition from
stationary mode to the oscillatory mode takes place de-
creases with increase in the value of the mechanical
anisotropy parameter.

(3) The effect of increasing the value of mechanical anisotropy
parameter in the presence of rotation is to allow the onset
of convection to be oscillatory rather than stationary.

(4) The effect of Darcy–Prandtl number is to delay the onset of
oscillatory convection.

(5) The Nusselt number increases with increase in ξ where as
it decreases with the increase in Ta and η.
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